An efficient algorithm for the calculation of reserves for non-unit linked life policies
نویسندگان
چکیده
The underlying stochastic nature of the requirements for the Solvency II regulations has introduced significant challenges if the required calculations are to be performed correctly, without resorting to excessive approximations, within practical timescales. It is generally acknowledged by actuaries within UK life offices that it is currently impossible to correctly fulfil the requirements imposed by Solvency II using existing computational techniques based on commercially available valuation packages. Our work has already shown that it is possible to perform profitability calculations at a far higher rate than is achievable using commercial packages. One of the key factors in achieving these gains is to calculate reserves using recurrence relations that scale linearly with the number of time steps. Here, we present a general vector recurrence relation which can be used for a wide range of non-unit linked policies that are covered by Solvency II; such contracts include annuities, term assurances, and endowments. Our results suggest that by using an optimised parallel implementation of this algorithm, on an affordable hardware platform, it is possible to perform the ‘brute force’ approach to demonstrating solvency in a realistic timescale (of the order of a few hours).
منابع مشابه
Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms
The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...
متن کاملA POLYNOMIAL TIME BRANCH AND BOUND ALGORITHM FOR THE SINGLE ITEM ECONOMIC LOT SIZING PROBLEM WITH ALL UNITS DISCOUNT AND RESALE
The purpose of this paper is to present a polynomial time algorithm which determines the lot sizes for purchase component in Material Requirement Planning (MRP) environments with deterministic time-phased demand with zero lead time. In this model, backlog is not permitted, the unit purchasing price is based on the all-units discount system and resale of the excess units is possible at the order...
متن کاملAn efficient finite difference time domain algorithm for band structure calculations of Phononic crystal
In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...
متن کاملSome Conditions for Characterizing Minimum Face in Non-Radial DEA Models with Undesirable Outputs
The problem of utilizing undesirable (bad) outputs in DEA models often need replacing the assumption of free disposability of outputs by weak disposability of outputs. The Kuosmanen technology is the only correct representation of the fully convex technology exhibiting weak disposability of bad and good outputs. Also, there are some specific features of non-radial data envelopment analysis (DEA...
متن کاملPropensity based classification: Dehalogenase and non-dehalogenase enzymes
The present work was designed to classify and differentiate between the dehalogenase enzyme to non–dehalogenases (other hydrolases) by taking the amino acid propensity at the core, surface and both the parts. The data sets were made on an individual basis by selecting the 3D structures of protein available in the PDB (Protein Data Bank). The prediction of the core amino acid were predicted by I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Algorithmic Finance
دوره 3 شماره
صفحات -
تاریخ انتشار 2014